
Creating a FAIR Data Catalog to Support Scientific
Modeling

Basel Shbita
Information Sciences Institute

University of Southern California
Marina del Rey, CA, US

shbita@isi.edu

Binh Vu
Information Sciences Institute

University of Southern California
Marina del Rey, CA, US

binhvu@isi.edu

Dan Feldman
Information Sciences Institute

University of Southern California
Marina del Rey, CA, US

danf@usc.edu

Minh Pham
Information Sciences Institute

University of Southern California
Marina del Rey, CA, US

minhpham@usc.edu

Arunkumar Rajendran
Information Sciences Institute

University of Southern California
Marina del Rey, CA, US

arunkumr@isi.edu

Craig A. Knoblock
Information Sciences Institute

University of Southern California
Marina del Rey, CA, US

knoblock@isi.edu

Jay Pujara
Information Sciences Institute

University of Southern California
Marina del Rey, CA, US

jpujara@isi.edu

Yao-Yi Chiang
Information Sciences Institute

University of Southern California
Marina del Rey, CA, US

yaoyic@usc.edu

Abstract—Scientific models often depend on complex, interre-
lated datasets, and finding, preparing, and cleaning these datasets
often dominates the time devoted to scientific inquiry. We are
addressing these problems by creating a Data Catalog that
provides a central clearinghouse for metadata about scientific
datasets, supports fuzzy searching for data variables using NLP
techniques, provides a number of automated, data-understanding
tools to make data curation easier, and automates the processes
for transforming, joining, and formatting datasets for different
use cases. In this abstract, we provide a short description of the
salient components of our system.

I. INTRODUCTION

Scientific inquiry frequently relies on data. Finding the
correct data and subsequently preparing this data by cleaning,
reformatting, and transforming it are extremely laborious and
time-consuming processes that hinder progress. Creating open
repositories of datasets with the accompany semantic metadata
and tools for allowing efficient preparation has the potential
to dramatically improve the pace of scientific progress. We
are currently building the knowledge technologies to support
such a data repository, which we call a Data Catalog, drawing
inspiration from the W3C Data Catalog vocabulary1. The
Data Catalog consists of dataset metadata, such as temporal
and geospatial scope, and pointers to existing data resources.
A “fuzzy” search interface ensures a link between scientific
ontologies and controlled vocabularies (such as the Scientific
Variable Ontology2) and human-comprehensible terms. The

1https://www.w3.org/TR/vocab-dcat/
2http://www.geoscienceontology.org/svo/1.0.0/

main focus of the data catalog is to incorporate a data
specification which can be populated using automated tools
and improved with user feedback. These data specifications
allow data to be cleaned, transformed, and formatted with
minimal user effort. Through this design, the data catalog
provides findable datasets, accessible metadata, interoperable
data descriptions, and tools to foster reusable data. In the
subsequent section, we describe each of the components of
the Data Catalog and how they support FAIR data.

II. REGISTERING DATA IN THE DATA CATALOG

Data is initially ingested into the Data Catalog through user
submission. Figure 1 shows a simple registration interface for
the data catalog, where the user provides a dataset name, a
pointer to the resources within the dataset, the temporal and
geospatial extent of the dataset, and the variables contained
within the dataset. Although this simple interface collects the
essential metadata, the data catalog provides an API that sup-
ports programmatic access and allows the user to register more
complex datasets and provide more detailed metadata (e.g.,
datasets with many files or additional provenance information).

III. FINDING DATASETS WITH FUZZY SEARCH

Data registered in the data catalog is indexed by all of the
provided metadata, allowing searches based on time, space,
variable name, or a combination of these queries (among
others). However, basic searches over metadata are often in-
sufficient to meet the needs of a diverse use base. For example,

mailto:shbita@isi.edu
mailto:binhvu@isi.edu
mailto:danf@usc.edu
mailto:minhpham@usc.edu
mailto:arunkumr@isi.edu
mailto:knoblock@isi.edu
mailto:jpujara@isi.edu
mailto:yaoyic@usc.edu

Fig. 1: Users can provide very basic metadata about a dataset
to register it in the data catalog. An API provides more
powerful, programmatic access to data registration

technical data definitions can be a barrier to data reuse,
particularly when different communities use diverse terms for
the same phenomena or a novice user is beginning to acquire
data. To help mitigate these barriers, our data catalog supports
a “fuzzy” search that allows the entry of human-interpretable
keywords and connects them to datasets based on the scientific
variable description and dataset contents. Figure 2 shows an
example of how a user interested in finding data about rain
is guided to the scientific variables for precipitation flux and
provided with links to the formal definition of this term.
The fuzzy search capability uses several strategies for finding
related concepts, including semantic knowledge in WordNet,
statistical assocations mined with Word2Vec, and topic models
trained on scientific literature as well as scoring functions that
use string similarity metrics and TF-IDF weighting.

IV. AUTOMATED TABLE UNDERSTANDING TOOLS

Another barrier to FAIR data is the diversity of formats data
is presented in. Although humans are adept at understanding
the structural layout of datasets and mapping these into se-
mantic data intuitively, generating linked data from a file is

Fig. 2: A “fuzzy” search allows users to find variables and
data in a formal scientific ontology using human-interpretable
keywords. The search uses Word2Vec, WordNet and topic
models to suggest appropriate variables.

still a cumbersome process. To aid in this process, we have
developed tools for automatically understanding structured,
tabular data. Our tools first classify each cell or value in
the dataset based on its expected role, then group related
cells into functional blocks, and then finally try to predict
the relationships between these functional blocks.Figure 3
illustrates the major steps in this process. For example, sci-
entific datasets often contain numerical data, attributes, and
metadata in different cells. These cells are spatially organized
so that related values (e.g., temperatures) are grouped together
while the associated attributes (e.g., location) are similarly
grouped and have a distinct spatial relationship. Our table
understanding system labels cells using conditional random
fields, identifies blocks of related cells using a decision-tree
style entropic measure, and predicts block relationships using
link prediction also implemented as a conditional random field.

V. IDENTIFYING UNITS IN SCIENTIFIC DATA

The identification of units of measurement that are associ-
ated with data is a challenging task because it requires having
some domain knowledge about the process that produced the
data. Frequently, units appear in files within datasets in a
textual representation that is not easily recognized and does not
carry any semantic or dimensional meaning. We implemented
a prototype system, called CCUT [1], which uses grammar
tools to automatically parse the different components in a
unit found in textual data in files and map them to elements
of a standard ontology called QUDT3 to form a structured
semantic output. The output depicts the different relationships,
attributes and semantics of units and allows users to have a
better understanding of their data. Figure 4 shows an example
of a compound unit present in cell B8, ’A/cmˆ2’ (marked in
a red box), in a spreadsheet file and its corresponding output.
The evaluation of the system has demonstrated early results

3http://www.qudt.org/

Fig. 3: An automated table understanding system is used to determine the format and structure of tabular, scientific datasets
by classifying cell types, identifying regions of related cells, and determining layout relationships.

and can be beneficial for scientists to perform a fast process
of data analysis and understanding.

(a) a compound unit in xls spreadsheet
{
"PEDS LSTP Table": {
"B": {
"8": [{
ccut:hasDimension: "L-2 I",
..
ccut:hasPart: [
{
ccut:hasDimension: "I",
qudtp:quantityKind: "http://data.nasa.gov/qudt/owl/unit#Ampere",
qudtp:symbol: "A"

},
{
ccut:exponent: "-2",
ccut:hasDimension: "L",
ccut:prefix: "http://data.nasa.gov/qudt/owl/unit#Centi",
ccut:prefixConversionMultiplier: 0.01,
qudtp:quantityKind: "http://data.nasa.gov/qudt/owl/unit#Meter",
qudtp:symbol: "cm"

}
]

}]
}

}
}

(b) partial representation of the detected unit (’A/cmˆ2’)

Fig. 4: An example of a detected compound unit and its
representation

VI. SPECIFYING DATA LAYOUTS

Shared datasets in the data catalog are often in different
formats (e.g., CSV, Spreadsheet, JSON, or NetCDF) and in
various layouts (e.g., row-based or matrix tables). Therefore,
simple tasks such as extracting a subset of data or transforming
units of variables are difficult and laborious. To address this
problem, we have developed a data description language,
D-REPR, for modeling datasets. Specifically, users describe
attributes (or variables) and the locations of their values in
a dataset. In D-REPR, the values of each attribute form a
separated column array, to create a table that contains all
records in the dataset, users define rules for joining values
of these attributes together (i.e., combining columns to form
the table). Finally, the semantic meaning of each attribute

(or column) and the relationships between the attributes are
specified using domain ontologies, which users can choose.

Given a D-REPR model of a dataset, we can convert data in
the dataset into a common representation (e.g., RDF Graph or
high-dimensional arrays) that allows us to transform or query
the data easily.

VII. COMBINING, TRANSFORMING AND REFORMATTING
DATASETS

In order to combine, transform or reformat datasets, users
must select, understand, and align them manually. To address
this issue we implemented a framework which constructs
a transformation pipeline based on some specification from
users. The framework uses our data layout module presented
in section VI to represent the actual data which may need to
be transformed into one standard format for later uses.

The idea is that we use smaller components (we refer to
them as adapters or building blocks) which we ’concatenate’
to form a transformation flow. This modular design allows us
to reuse existing modules and wrap ready-scripts to create a
language-independent module and pipeline. There are three
types of components (adapters):

• Reader Adapter. Used as an entry point in the pipeline. It
reads an input file (data) and a description of it (D-REPR
language).

• Transformation Adapter. A class which performs a trans-
formation done in a form of an API endpoint (remote or
local) or an in-code script or library (i.e. using python or
R). It does not materialize the data into an output, it just
reproduces the data.

• Writer Adapter. Used as an exit point in the pipeline. It
writes an output file based on a description file (D-REPR
language)

Each adapter is declared using a semantic description of its
attributes (i.e. inputs and outputs). The description enables
input data validation and compatibility checking between the
concatenated adapters and allows an easier construction of the
transformation pipeline based on some simple input from the
user. Figure 5 depicts the general idea of our architecture
that is based on building-blocks and components that can
be concatenated. In figure 5a we show a simplified scheme
of a transformation pipeline involving a reader adapter, two
transformation adapters (’TA’) and a writer adapter. Figure

5b shows a transformation pipeline that involves two smaller
pipelines that is used to create two output files. Each pipeline
utilizes the different adapters to create files that are required
to be in a clearly defined format and will be used by a specific
software. For example, the component UnitTrans uses the
CCUT service we mentioned in section V to perform a unit
conversion on the data. Other components, such as Wrap and
GraphStr2Str, are used to join and reformat the same resource
without changing the actual content of the data.

(a) a simplification
of a general transfor-
mation pipeline.

(b) an example flow involving different
types of adapters.

Fig. 5: An abstraction of the data transformation pipeline

Acknowledgements: This material is based upon work sup-
ported by United States Air Force and the Defense Advanced Research
Projects Agency (DARPA) under Contract No. FA8650-17-C-7715 and award
W911NF-18-1-0027.

REFERENCES

[1] B. Shbita, A. Rajendran, J. Pujara, and C. Knoblock, Parsing, Represent-
ing and Transforming Units of Measure, in Modeling the World’s Systems,
2019

	Introduction
	Registering Data in the Data Catalog
	Finding Datasets with Fuzzy Search
	Automated Table Understanding Tools
	Identifying Units in Scientific Data
	Specifying Data Layouts
	Combining, Transforming and Reformatting Datasets
	References

