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Abstract

Data-intensive models have become critical to understanding the world. In order to reuse
or combine datasets to support modeling, scientists must select, understand, and align them
manually, a laborious process that requires understanding different domains and formats. To
assist the modeling process, we present an unsupervised approach that identifies units in source
data and provides a corresponding semantic representation. Then, we provide a method that
enables scientists to perform data transformations, such as unit conversions, which are commonly
necessary in modeling world systems. Our preliminary results demonstrate that our method can
be used to automatically capture and transform units over spreadsheets achieving an F1-score
of 0.48 in unit detection and parsing, and an accuracy of 62% in the semantic representation
and transformation.

1 Introduction
Data normalization is a difficult task which occupies as much as 80% of the total data analysis
time [4]. One reason data normalization is challenging is because the data are drawn from diverse
domains and expressed in a variety of potentially incompatible formats. In this paper we focus on
an important task in data normalization, the identification of units that are associated with the
data. Unit identification is challenging because it requires having some domain knowledge about the
process that produced the data. For example, a scientist who wishes to integrate a hydrology model
which associates groundwater-withdrawal units in gallons with an agricultural watering model that
presumes input units in liters would need to manipulate the data to allow the composition of the
data in the required units.

Today, scientists’ approach to handling incompatibility in units is usually via a one-time transfor-
mation. If they associate data with the incorrect units, they might be unable to use the dataset
and resort to ad-hoc strategies that harm the transparency and reproducibility of the results. The
diversity in disciplines, domains and conventions in different regions around the world poses an
additional challenge to this problem. Considering the vast amount of data presently used in model-
ing infrastructure this problem becomes intractable and tedious and is often susceptible to human
error.

One potential solution to the difficulties of manual unit detection and conversion is the use of
automated systems. Unfortunately, automating unit detection is a difficult task. Frequently, units
appear in files within datasets in a textual representations that is not easily recognized. These
text strings usually contain a formula-like form: unit abbreviations, exponents, and additional
elements which represent an atomic or a compound unit. An atomic unit is a single unit symbol
which may be modified by additional elements such as exponents or prefixes (i.e. ’GHz’, ’m^2’)
whereas compound units are composed from two or more atomic units with some relationship
between them (i.e. ’A/cm^2’). Textual representation is not sufficient and does not carry any
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semantic or dimensional meaning and may require additional investigation if one needs to perform
transformations and data alignment. Additionally, lexical conventions such as capitalizations are
very important when representing units to resolve semantic ambiguities. For example: the text
string ’S’ would stand for Siemens (electric conductance unit) where ’s’ would represent a unit
of type second (time unit). Supporting SI (International System of Units) prefixes complicates the
problem even more, adding an additional layer of combinatorial complexity.

Previous research [9,11,13] has developed approaches to allow easier data representation, cleaning
and transformation. However, previous research still depends on human interaction in early data
processing stages. Published ontologies are a beneficial resource that can be used for a faster process
of data cleaning. NASA has published an ontology called QUDT (Quantity, Unit, Dimension and
Type) [2] which defines the base classes and attributes used for modeling physical quantities, units
of measure, and their dimensions. The main drawback of existing unit ontologies is the amount of
effort required to represent datasets, there is no readily an available tool to generally link data to
the units used in the datasets. Thus it is intuitive to extend and integrate existing ontologies into
a framework to enable an automatic and fast process of data understanding, normalization and
transformation.

Significance In this paper, we present an approach to automatically detect, parse, normalize
and represent compound and atomic units of measure in a data source. Using the semantic rep-
resentation we are able to support scientists by providing the ability to perform unit conversions
that are less prone to error. To demonstrate our idea, we implemented a prototype system, called
CCUT (Canonicalization Compound Unit Representation and Transformation), which uses gram-
mar tools to automatically parse the different components in a unit found in textual data in files and
map them to elements of a standard ontology defined by NASA [2] to form a structured semantic
output. The output depicts the different relationships, attributes and semantics of units and allows
users to safely perform a transformation between units. Our method was tested on spreadsheets
and can be easily deployed over a range of quantitative data resources and thus accelerate and
improve the modeling process in any scientific domain.

2 Problem Definition
The problem we address is given arbitrary dataset files, in some common structured format (i.e.
csv, json, xls), find textual explicit mentions of measurement units and map them to the QUDT
units ontology [2]. Using the semantic representation we want to produce a structured standard
ontologized output that can be easily interpreted by humans and machines. Then, we want to lever-
age the ontology to assist users in common modeling transformations such as complex compound
units conversion.

As an example, consider the compound unit present in cell B8, ’A/cm^2’ (marked in a red box), in
a spreadsheet file as shown in figure 1a. A conventional semantic representation for this string is
shown in figure 1b where each base unit is an element of the list labeled with qudt: hasPart and its
URI is introduced within the key labeled qudt:quantity. Besides the unit ontology, each part has
additional attributes such as UNK:prefix and UNK:exponent. Additionally, qudt:abbreviation
and qudt:hasDimension describe the properties of each element in the unit and are computed for
the overall normalized compound unit, and the attribute labeled UNK:prefix conversion multiplier

can be easily utilized for a unit conversion service.
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(a) a compound unit in xls spreadsheet

qudt:_hasPart_: [

{

qudt:hasDimension: "I",

qudt:quantity: "http://data.nasa.gov/qudt/owl/unit#Ampere",

qudt:symbol: "A"

},

{

UNK:exponent: "-2",

UNK:prefix: "http://data.nasa.gov/qudt/owl/unit#Centi",

UNK:prefix_conversion_multiplier: 0.01,

qudt:hasDimension: "L",

qudt:quantity: "http://data.nasa.gov/qudt/owl/unit#Meter",

qudt:symbol: "cm"

}

],

qudt:abbreviation: "A cm-2",

qudt:hasDimension: "L-2 I"

(b) partial JSON representation for ’A/cm^2’

Figure 1: An example of a detected compound unit and its representation

3 Our Approach
Our approach tackles three core problems, these are illustrated in figure 2 and can be summarized
as follows:

1. Identify and parse the individual prefixes, atomic units, their exponents and multipliers which
compose a string of a compound unit. As shown in transition 1 in figure 2 (section 3.1)

2. Map each atomic unit to its correct ontology in the schema. As shown in transition 2 in figure
2 (section 3.2)

3. Compute the dimension of the compound unit and construct a normalized representation
of the compound unit with attributes that are required for transformation. As shown in
transition 3 in figure 2 (section 3.3)

Figure 2: flowchart describing our approach

3.1 Parsing

Given a string that contains units, we want to generate a structured form which represents that unit
and provide a set of relationships between its components. In this stage, there are a few problems
we need to solve.

First, in the QUDT ontology there are some units that are missing a complete definition and have
partial dimension information. In order to address this issue, we created a closed set of meaningful
units and defined base dimension classes which were derived from the ontology.

Second, atomic units may be accompanied with unit prefixes (such as ’kilo’, ’micro’ or ’mega’),
and may have different variants that are used to symbolize the same prefix. For example: a prefix
of type micro (10−6) may show up in text as ’micro’, ’mu’ or ’μ’. Additionally, there are some
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cases in which our parser can run into ambiguous cases. For example: the unit string ’min’ can be
interpreted as minute (time unit) or as a combination of the prefix ’m’ as in ’milli’ (10−3) and the
unit inch that is abbreviated as ’in’ (length unit). To handle these issues we manually encoded
20 prefix classes that characterize unit prefixes in addition to their well-known different variants,
and implemented an iterative joint matching algorithm for {prefix, unit} pairs. The algorithm gives
higher confidence to a mapping of a single atomic unit and iteratively keeps searching for a joint
match in case of a failure in the first attempt until the two elements are mapped to a well-defined
terms correspondingly.

Table 1: Some grammar rules

Character Rule

/ Split to numerator & de-
nominator

^ Interpret as an exponent

( and ) Split to canonical form

- Interpret as a negative sign

. Interpret as a floating point

Last, we must consider the different characters
which represent the relations between the atomic
units (i.e. fractions, exponents, etc) in a string.
To tackle this issues, we implemented a well de-
fined grammar, that is, a specification for how
to read a language of compound and atomic
units. We used Arpeggio [5] as a grammar parser.
Arpeggio is a recursive descent parser with back-
tracking and memoization that is based on PEG
(Parsing Expression Grammar) formalism. Ta-
ble 1 depicts some grammar rules we have de-
fined.

3.2 Structured Unit Representation

While the structured representation is more informative, it still does not capture a semantic mean-
ing. In order to provide the semantic meaning we have to rely on ontologies that define universal
conventions for units. The QUDT ontology defines a unit symbol (qudt:symbol) that is associated
with a unit ontology instance (qudt:Quantity) that has a unique URI. This unit instance is asso-
ciated with the symbol using a relation of type qudt:QuantityKind. This relation is an instance
in itself and is associated to some dimension (qudt:Dimension). Given the above, we are able to
map an atomic unit string to its semantic type and find its dimensions. Utilizing the additional
grammar output terms (i.e. exponents) enables us to normalize the compound unit and present an
interpretable representation.

As mentioned earlier in section 3.1 we implemented a tight integration between the prefix classes and
the unit classes. This provides an efficient solution and insures a proper semantic representation.
Since each element is linked to a Uniform Resource Identifier (URI) and is uniquely identified by
it, our solution provides a cost-free representation.

3.3 Transforming Compound and Atomic Units

In this stage, our goal is to enable arbitrary transformations between units using our semantic
structured representation which we have already generated and mapped. A dimensions-based
approach encoded in the QUDT ontology relates each unit to a system of base units using numeric
factors. For example, any measurement of length can be expressed as a number multiplied by the
unit meter (the SI base for the length dimension). Given that, and the set of exponents, prefixes
and multipliers derived from the grammar and applied over a set of fundamental dimensions, we are
able to generate the required calculation to perform unit conversions of same dimension. We use the
conversion multiplier and offset, which are multiplied and added to quantities to convert from the
current unit to the corresponding SI unit. So, if m1, o1 and m2, o2 are the conversion multipliers
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and offsets for U1 and U2 respectively, mp1, op1 and mp2, op2 are the conversion multipliers and
offsets of their prefixes respectively, and α and β are their exponents respectively, then the proper
conversion is according to Equation 1. When a conversion is desired between two SI units, their
offsets are equal to zero by definition and therefore we get a simplified form as in Equation 2. Thus,
we can offer a transformation service to users via an additional service endpoint in the system to
enforce correct and safe conversions.

U2 =
(
(U1·mαp1+op1)·mα1+o1−o2

mβ2
)− op2

mβ
p2

(1)

U2 = U1
(m1 ·mp1)

α

(m2 ·mp2)β
(2)

4 Evaluation
We have employed the EUSES spreadsheet corpus [6] and implemented an xls file reader for the
purpose of testing against our API endpoints of the CCUT system. The corpus contains 1345 files
and an overall number of 5891 spreadsheets collected from different sources. We randomly sampled
30 files that included 112 spreadsheets. Explicit unit strings were present only in 31 spreadsheets.
We used the sampled set as a testing set and for which we created a validation file to compare the
dimensional analysis and the different elements to (including their URIs and normalized form). In
the given set 267 compound units (and a total of 530 atomic units) were observed and manually
annotated in the validation set. In addition, we defined an in-code python dictionary to keep track
of the observed compound unit strings which have the same normalized dimension in order to test
the accuracy of our transformation service between each pair of units in the same dimension.

CCUT detected and parsed a total of 882 atomic elements (328 true positives; 554 false positives)
and misdetected 150 elements (false negatives), generating a total precision of 37.2%, a recall of
68.6% and an overall F1-score of 0.48. Out of the valid compound units (true positives) 62.12%
were normalized correctly (overall dimension representation was precise). A total of 11 distinct
(compound) dimension groups were identified, out of which 5 groups included more than a single
distinct string representation, providing us a total of 42 transformation test cases of pairs which
had a 100% accuracy in the transformation calculation. This is normally what we expected in the
transformation tests since these compound units were accurately captured and represented.

We examined cases where we were unable to map the correct unit and discovered that in some cases
the units were detected in irrelevant text. Some of the detected units were mistakenly extracted
from abbreviations for other entities or organizations. These issues caused an overall low precision
score. In other cases there is an ambiguity because the same abbreviation is used in multiple units
(i.e. ’L’ stands both for liter, a volume unit, and lambert, a luminance unit). Our system
does not currently support a principled mechanism for using context to make a more intelligent
prediction. In some cases we simply did not have the correct unit in our knowledge base which
affected our recall.

These early results are encouraging and are expected to be increased as described in section 7 where
we address some of these issues.
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5 Related Work
Chambers and Erwing [3] presented a reasoning system for inferring dimension information in
spreadsheets. Their system aims to check the consistency of formulas and detect errors in spread-
sheets. Abraham and Erwig [1] developed a VBA-based add-on for excel which enables the detection
of errors and which is based on a set of rules for automatic header inference. Although these systems
do not require any user intervention for their operation, they do not offer a semantic representation
or any conversion services as we present in our work.

Existing frameworks such as VizieR [10], the yt Project [13] and Measurement-units-in-R [11]
attempt to deal with the problem of unit representation and conversion by giving users the option
to enforce a unit of measure for a given fixed set of data. This enables one to add, subtract,
multiply, and divide using quantities and dimensional arrays. When used in expressions, some of
these platforms automatically convert units, and simplify them when possible. Measurement-units-
in-R gives the user the flexibility to expand beyond predefined units but it requires an initial user
definition and understanding of data. Our work differs by providing users the ability to capture
the semantics behind units given a string without any initial definitions since it uses a standard
and structured representation defined by NASA.

The NASA QUDT ontology [2] is being adopted in many scientific research projects [8,12]. Of the
established and well-governed unit of measure ontology options, QUDT is well-aligned with our
understanding of the relationships between measurements and units of measure.

6 Conclusion
With increasing volume and variety of data, we require better techniques and tools to enable
end-users and non domain experts to easily understand, analyze and transform quantitative data.
Existing techniques rely on human interaction and some expert domain knowledge in some cases.
In this paper, we presented a baseline unsupervised approach to automatically captures a semantic
representation and normalization for units of measure and offer unit conversions to end-users. The
evaluation of the system has demonstrated early results and leaves room for improvement but can
be beneficial for scientists to perform a fast process of data analysis.

7 Discussion and Future Work
Our approach has several limitations, including the inability to use context to disambiguate units
and a naive approach to match text. In future work we plan to use context to increase the precision
of the system. Examples of useful context include the co-occurrence of units within a domain
and locations in datasets (e.g., column headers) that are more likely to contain units. Moreover,
we want to use machine learning techniques to distinguish different domains to help disambiguate
units.

Our system is limited by our knowledge base of types, which affects our recall. We will address
this issue by expanding our knowledge base with more types of units and provide users with an
interface in which they can extend the base ontology by adding new units and transformation
attributes.

We also believe that a combination of unit detection with NLP approaches for contextual text
could strengthen the reasoning of the system and allow detection of units which are not mentioned
explicitly in text. Beyond unit detection, we plan to extend our approach to solve the broader
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problem of table understanding, allowing us to detect specific variables contained in datasets along
with temporal and geospatial scoping.
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9 Resources
This work has been developed as part of the Model INTegration (MINT) project [7] which envisions
the development of a framework for resolving semantic, spatio-temporal, and execution mismatches
in model integration. This work is under ongoing development; Releases of the software and tools
will appear on the MINT project website1 in the future.
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