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Abstract—Scientific software is crucial for understanding, 

reusing and reproducing results in computational sciences. 

Software is often stored in code repositories, which may contain 

human readable instructions necessary to use it and set it up. 

However, a significant amount of time is usually required to 

understand how to invoke a software component, prepare data 

in the format it requires, and use it in combination with other 

software. In this paper we introduce OKG-Soft, an open 

knowledge graph that describes scientific software in a machine 

readable manner. OKG-Soft includes: 1) an ontology designed 

to describe software and the specific data formats it uses; 2) an 

approach to publish software metadata as an open knowledge 

graph, linked to other Web of Data objects; and 3) a framework 

to annotate, query, explore and curate scientific software 

metadata. OKG-Soft supports the FAIR principles of 

findability, accessibility, interoperability, and reuse for 

software. We demonstrate the benefits of OKG-Soft with two 

applications: a browser for understanding scientific models in 

the environmental and social sciences, and a portal to combine 

climate, hydrology, agriculture, and economic software models.  

Keywords—software metadata, software registries, FAIR, 

knowledge graphs, software composition, software interoperability 

I. INTRODUCTION  

Software is a key product of scientific research, as it can 
be used to understand and reproduce the findings reported in 
a publication (e.g., by rerunning a hydrology model, a genome 
sequence analysis or testing a trained machine learning 
model). The importance of software is increasingly 
recognized [1], with publishers and community initiatives 
encouraging researchers to make their software openly 
available to others.1 

Scientific software created by scientists should be 
appropriately documented and curated to facilitate reuse by 
other researchers. Code repositories such as GitHub 2  or 
BitBucket3 provide the means to store and version code, while 
software container repositories such as DockerHub4 capture 
the execution environment required to run software. However, 
there is usually a lack of important information that makes 
software difficult to discover and reuse, such as descriptions 
of the main features of the software, unambiguous usage 
instructions, incomplete sample data, etc. Moreover, when 

                                                 
1 https://paperswithcode.com 
2 github.com/ 
3 https://bitbucket.org/ 

this kind of information is present, it is not machine readable, 
so it is hard to develop tools to facilitate those tasks for users. 

A major barrier to reuse is the time and effort required to 
understand how to run scientific software. Researchers need 
to understand how to prepare data for software, how to invoke 
it, and how to interpret the results produced after its execution. 
Despite the desire to use standards, different software codes 
operate with heterogeneous data formats. Studies have shown 
that scientists spend between 60% and 80% performing data 
preparation steps when composing software together in 
scientific workflows [2]. This problem is compounded in 
numerous applications that require combining software that 
has been developed by independent third parties. For example, 
combining software for population genomics with another for 
genomic network analysis, or combining a hydrology model 
software with an agriculture model.  

While many common formats and standards have been 
proposed, 5  this alone will not solve the interoperability 
problem. First, there are still quite diverse standards for the 
same kind of data, and a given software package usually 
adopts only one. A researcher that wants to use the software 
with data from more than one source often needs to understand 
that particular format adopted by the software, then write code 
to do the necessary transformations. Second, when composing 
different software, it is often the case that the data formats are 
different. In some cases, the software and standards may have 
been developed by different communities (e.g., hydrology and 
agriculture). Addressing these challenges requires that 
scientific software is described with sufficient details about 
the data used, in terms of both format and content. And if these 
representations are machine readable then it would be possible 
to develop tools to do data transformations automatically.  

In this paper we present OKG-Soft, a framework to 
capture and publish machine-readable software metadata. 
OKG-Soft builds on OntoSoft [3], [4], our previous work to 
capture scientific software metadata, and expands it with 
machine readable descriptions of the expected contents of 
inputs and outputs of software. OKG-Soft has three main 
novel contributions: 

1- A modular ontology to describe software and its 
associated input and output metadata. 

4 hub.docker.com/ 
5 https://frictionlessdata.io/specs/ 
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2- An approach to publish software metadata within an 
open knowledge graph, and linking it to the Web of 
Data following Linked Data principles [5], [6]. 

3- A framework designed to populate, query, explore, 
and curate software metadata. 

We demonstrate the benefits of our approach by capturing 
metadata for software from environmental and social sciences, 
including software models from climate, hydrology, economy 
and agriculture, and by showing how this metadata can be 
used to explore, understand, and compose diverse software. 

Our approach with OKG-Soft captures and publishes 
machine-readable metadata in support of the FAIR principles 
of findability, accessibility, interoperability, and reuse for 
software [7]. 

The rest of the paper is structured as follows. Section 2 
describes related work for capturing, storing and accessing 
software metadata. Section 3 explains the insights of OKG-
Soft, i.e., the rationale behind the ontologies we propose and 
reuse; how the knowledge graph is populated, linked and 
enriched with existing knowledge bases; and how different 
types of developers can access the content of OKG-Soft 
through our proposed APIs. Section 4 presents how we have 
validated our approach with a series of queries to gather 
insight about the software entries in the knowledge graph, 
together with two showcase applications, one for exploring 
software model metadata and another one for composing 
software. Finally, Section 5 concludes the paper discussing 
our current efforts and future work. 

II. RELATED WORK 

In this section we discuss existing ontologies for capturing 
different aspects of software metadata, along with systems that 
facilitate describing, capturing and sharing software.  

A. Ontologies for Capturing Software Metadata 

A number of ontologies have been proposed to describe 
software at different levels of granularity. In our previous 
work we presented OntoSoft [8] and OntoSoft-VFF [4], which 
capture scientific software metadata from a scientist’s 
perspective through a series of questions they are familiar 
with. In this work we extended OntoSoft to expose additional 
metadata, context and semantic relationships between entities 
associated with software. This includes the expected contents 
of software input and output files, which help determining 
compatible software components. 

The CodeMeta project6 [9] is a community driven effort 
that presents a generic crosswalk from common terms used by 
code repositories to describe software (e.g., pointing to the 
code repository, readme file instructions, license, metadata, 
etc.). CodeMeta includes a mapping to OntoSoft and extends 
the Schema.org vocabulary, 7 which has been widely adopted 
by the community. This vocabulary does not semantically 
structure the contents of software (i.e., inputs, outputs and 
executable information), but we have reused in our work to 
incorporate generic metadata about software. 

                                                 
6 https://github.com/codemeta 
7 http://schema.org/ 
8 http://usefulinc.com/ns/doap 
9 http://km.aifb.kit.edu/sites/cos/ 
10 http://purl.obolibrary.org/obo/swo.owl 
11 http://purl.obolibrary.org/obo/ro.owl 

The Description of a Project Ontology (DOAP) 8 is 
designed to describe software projects, emphasizing the 
description of the organization of software (issues, bug 
tracking, wiki discussions, etc.). While this effort is related to 
software, it goes beyond the scope of this paper. 

The Core Software Ontology (CSO)9 and Core Ontology 
of Software Components (COSC) [10] extend the DOLCE 
[11] upper ontology to describe software libraries and web 
services in detail. CSO specifies concepts related to software 
and data, and includes both software components and services. 
COSC extends CSO to define software components further. 
An interesting aspect of these ontologies is that inputs and 
outputs of software are defined as roles, played by different 
types of data. Roles are adopted for addressing policies, which 
have to be specified by users. Such formalizations require 
users to understand logic inference in ways that makes the 
vocabularies difficult to reuse. The link between software 
inputs and their expected contents is not modeled in CSO. 

In the bioinformatics domain, the Software Ontology 
(SWO)10 extends some of the Open Biomedical Ontologies, 
such as the Basic Formal Ontology [12] and the Relations 
Ontology 11  to describe software relationships. SWO also 
extends the EDAM Ontology [13], which describes common 
data types and formats used in bioinformatics, linking them to 
a taxonomy of software. In addition, SWO describes a 
thorough taxonomy of programming languages, but defines 
them as classes instead of instances. SWO does not describe 
the expected contents of inputs, outputs or formats.  

Finally, other ontologies have been designed to address 
specific aspects of software. For example, the DockerPedia 
ontology [14] captures executable information of software 
containers, such as their installed packages and potential 
vulnerabilities. DockerPedia builds on WICUS [15], an 
ontology to describe computational infrastructure for 
scientific experiments. We use these ontologies to inform our 
work in OKG-Soft. 

B. Software Repositories and Software Metadata Registries  

Scientists are increasingly using software repositories to 
store versions, test, integrate and disseminate their code. 
Repositories such as GitHub, GitLab 12  and BitBucket are 
perhaps the most widely used by the community, but don’t 
usually hold much metadata besides license, creator and 
installation instructions. When releasing code, scientists may 
refer to other more specific platforms, such as Figshare 13 or 
Zenodo,14 as they provide DOIs stating how to cite a particular 
code. Package repositories such as CRAN, 15  Pypi, 16  or 
Maven Central17 focus on the ability to execute and import 
code, but not necessarily on its usability. Software container 
repositories such as DockerHub address the execution of 
software with complex dependencies, but usually lack 
metadata necessary for effectively understand software. 

Software metadata registries focus on metadata 
descriptions of software, complementing code repositories 
which focus on the code. Software metadata registries may not 
store the code itself, but will likely have a pointer to a code 
repository to find it. Examples of software metadata registries 

12 https://gitlab.com/ 
13 https://figshare.com/ 
14 http://zenodo.org/ 
15 https://cran.r-project.org/ 
16 https://pypi.org/ 
17 https://search.maven.org/ 



are the Community Surface Dynamics Modeling System 
(CSDMS), which contains hundreds of codes for models for 
Earth surface processes [16], the Computational Infrastructure 
for Geodynamics, 18 which emphasizes metadata on how to 
perform model specific operations such as coupling and 
regridding; the Astrophysics Source Code Library (ASCL), 
which contains unambiguous code descriptions in 
astrophysics [17]; and OntoSoft [18], which describes 
software for geosciences. These software registries contain 
instructions on how to run software, but do not usually 
represent this information in a machine-readable manner to 
facilitate software reuse and composition. 

Scientific gateways such as NanoHub [19] allow 
describing and finding software, even executing tools 
individually. Similarly, scientific workflow systems combine 
software together to represent larger analyses. Scientific 
workflows usually include many software codes from a 
particular domain, e.g., LONI Pipeline for neuroimaging 
genomics[20], GenePattern and Galaxy for genomics [21], 
and Taverna for bioinformatics services [22]. However, while 
automated workflow composition based on inputs and outputs 
of software has been researched (e.g., [23], [24]) there is not 
much work in describing how the contents of inputs and 
outputs may be related to each other. 

III. OKG-SOFT: A KNOWLEDGE GRAPH FOR SCIENTIFIC 

SOFTWARE 

OKG-Soft is an open knowledge graph designed to 
represent software metadata in a machine-readable manner. 
OKG-Soft pays special attention to the description of inputs 
and outputs of software, in order to represent their expected 
formats and contents that can support automated data 
preparation and software composition. We organize OKG-
Soft in three main components: 1) an ontology designed to 
describe software and capture machine-readable metadata; 2) 
an open knowledge graph of software descriptions that 
publishes this metadata and 3) a curation and exploitation 
framework to facilitate developers and domain scientists 
exploring and reusing the contents of OKG-Soft. We further 
describe each of these components below. 

A. Software Description Ontology  

We have developed the Software Description Ontology 
(with prefix sd), the core ontology we propose for representing 
entities in OKG-Soft. The latest version of the ontology is 
available and documented at https://w3id.org/okn/o/sd. 

1) Development Methodology 
The Software Description Ontology relies on our previous 

work in OntoSoft [8] and OntoSoft-VFF [4]. The main 
differences with previous work are highlighted in Figure 1, 
and consist of a simplification of the core model, an extension 
of its semantics to relate concepts instead of textual 
descriptions and the addition of variables and metadata to 
capture how software may be used in composition with other 
software. The ontology was developed in an iterative manner, 
expanding the requirements from [18]. A list of our complete 
requirements may be found in [25] .  

We have favored the reuse of existing vocabularies and 
standards in our ontology development. We adopt Codemeta 
[9] to describe all basic software attribution terms, such as 

                                                 
18 https://www.earthsystemcog.org/projects/esmf/ 
19 http://www.qudt.org/release2/qudt-catalog.html 

author, maintainer, funding, license, associated publications, 
etc. Codemeta is a community-driven initiative that uses 
Schema.org as core vocabulary to represent software 
(schema:SoftwareApplication). As shown in Figure 1, we 
extend Schema.org to align our concept to that vocabulary and 
inherit all its metadata properties. An advantage of using 
Codemeta is that it has become a reference vocabulary 
between different code repositories, and hence it facilitates 
interoperability between software metadata entries.  

We have also extended the W3C Data Cubes standard [26] 
with dataset specifications (subclass of 
qb:DataStructureDefinition, as indicated in Figure 1). The 
Data Cube standard defines how to structure n-dimensional 
cubes of observations, and although it is tailored towards 
representing the observed values, the representation of the 
structure of a cube satisfies our needs for dataset 
representation. 

Next, we reused NASA’s Quantities, Units, Dimensions, 
and Data Types vocabulary(QUDT)19 for representing units of 
variables, enriched with the canonicalization compound unit 
representation and transformation ontology (CCUT) 20  that 
provides additional properties to describe how to perform unit 
transformations. 

Finally, we extend the DockerPedia ontology [14] to 
describe the executable containers that may be associated with 
a software component. DockerPedia was initially aimed at 
representing Docker containers, but other container 
frameworks can be easily represented in a similar manner. 
DockerPedia includes classes and properties to represent very 
specific descriptions of a software container, such as the 
software packages included, size of the image, dependent 
layers, testing commands, etc. Having these descriptions is 
useful to find commonalities between different software and 
potential vulnerabilities. 

2) Overview of the Software Description Ontology  
Figure 1 shows an overview of the main concepts of the 

Software Description Ontology. We use sd:Software as a 
general concept that refers to any piece of software we may 
want to describe. Scientific software is quite diverse, and may 
include generic software packages such as Scikit-learn21 (a 
popular machine learning analysis framework), web services 
or concrete software scripts configured to run with a particular 
dataset. Software may have one or more sd:SoftwareVersions, 
which represent the evolution of a software component across 
time. It is important to describe the code for different software 
versions separately when reporting scientific results, as 
otherwise the results may differ from previous executions with 
another software version. Versions may be associated with 
one or more sd:SoftwareConfigurations, which represent a 
unique executable function of a particular software. For 
example, one software configuration of Scikit-learn may 
include a primitive invocation that imputes a target dataset, 
while another one may expose a trained model with a 
classifier. Software configurations are key to appropriately 
capturing heterogeneous functions in complex software 
libraries that can be used for multiple purposes (e.g., dataset 
analysis, creating visualizations of results, preparing data, 
etc.); and capture how a software component is invoked. 

20 https://w3id.org/mint/ccut# 
21 https://scikit-learn.org/ 



Software configurations also link to the expected structure 
(sd:DatasetSpecification) of those inputs (sd:hasInput), 
parameters (sd:Parameter) and outputs (sd:hasOutput) used 
or produced by software. Note that dataset specifications may 
define the structure of other sources besides files, such as data 
streams, APIs or database accesses that software connects to. 
Dataset specifications capture critical metadata such as the 
format of an expected input (sd:hasFormat) and the variables 
it may contain (sd:VariablePresentation). Examples of 
variables include the population of a district in a city from a 
census file used for creating a map visualization; precipitation 
measurements used to create a weather report; or the 
prediction of a trained machine learning model. Most software 
use a structured format to read data from inputs and serialize 
the output, even when performing simple tasks such as split 
and merge data. By capturing the expected structure of inputs 
and outputs, we can relate different software configurations in 
terms of the expected variables they use and produce. 
Software using generic functions on variables (e.g., 
calculating the average of a column in a file) may be described 
using anonymous variables. 

Different software configurations may use different 
identifiers to refer to their variables. For instance, a climate 
model may expect a CSV file with a variable named “PREC” 
to refer to precipitation. Other software may use “P” to refer 
to the same variable. Fortunately, different scientific 
communities have developed and adopted naming standards, 
such as Climate and Forecast (CF)22 in the climate community 
or the Scientific Variables Ontology23 in geosciences, which 
aim at helping scientists use the same variable names based on 
their meaning. We have included the term 
sd:StandardVariable to allow linking different variables in 
dataset specifications to an existing standard (such as CF). 

3) Accessibility and Modularity 
Each version of the Software Description Ontology (SD) 

is stored independently and can be found in human readable 
and machine readable way to facilitate its reusability. The 
ontology aims to describe common aspects of software, and is 
organized in a modular manner. Therefore, anyone can import 
our ontology as part of another ontology that describes 
software at a more granular level. As an example, in our work 
we extended SD in the Software Description Ontology for 
Models (https://w3id.org/okn/o/sdm), which contains 
properties and classes specific to software for scientific 

                                                 
22 http://cfconventions.org 

models (e.g., spatial grids, time intervals at which the model 
operates, model assumptions, equations, processes captured 
by a model, etc.) 

B. Publishing  Software Metadata in the Web of Data 

A major aspect of how OKG-Soft supports FAIR 
principles for software is the publication of software 
descriptions as an open knowledge graph in the Web of Data 
according the Linked Data principles [5], [6]: 1) we used 
derreferenceable HTTP URIs as identifiers for all the elements 
in the graph; 2) we used W3C standards (RDF [27] and 
SPARQL [28]) to return valuable information when accessing 
a URI, and 3) we linked relevant URIs together. We also used 
a permanent URI structure to ensure the long term availability 
of URIs, following the convention:  

https://w3id.org/okn/i/[datasetID]/[instanceName] 

Where datasetID denotes the name of the dataset we want 
to contribute to (e.g., in case we want to organize the graph for 
different software communities) and instanceName represents 
the identifier of a resource in the dataset.  

Next, we populated OKG-Soft in two phases. In the first 
phase, we conducted a manual collection process of the 
information about the software models we wanted to add to 
the graph. In the second phase we expanded the collected 
information by linking it to external knowledge graphs with 
additional metadata. We describe these phases below.  

1) Manual Software Metadata Collection 
In a first iteration, we held a series of community meetings 
and workshops with software developers and environmental 
modelers to collect the metadata needed to describe and 
execute complex environmental models, including their data 
preparation and post-processing steps. This effort was 
performed within the scope of the Model Integration project 
(MINT) [29], which aims to provide a framework to reduce 
the time needed to integrate and compose complex software 
models from different disciplines, ranging from Climate to 
Agriculture or Economy. These types of software models are 
usually complex to set up and prepare data for, and therefore 
constitute an excellent testing ground for our ontology and 
knowledge graph. As a result of this process, we added 8 
models (2 from climate sciences, 4 from hydrology, 2 from 

23 http://www.geoscienceontology.org/svo 

  

  
Figure 1: Overview of the main concepts of the Software Description Ontology, used to model OKG-Soft. 



agriculture and 1 from economics), 31 software configurations 
that include software on how to transform, prepare and 
visualize data for the included models; and more than 280 
relevant variables which describe their input and output data 
in detail.  

2) Linking OKG-Soft to the Web of Data 
We have enriched OKG-Soft by linking parts of the graph 

to existing initiatives and knowledge graphs for describing 
different aspects of software. We describe them below: 

a) Semantic Description of Units.  

Expert users and developers describe units associated with 
variables in a human readable manner (e.g., “m/day”). 
However, this representation is not enough if we aim to 
automatically find compatible variables (authors may describe 
variables using different notations) or plan to perform 
automated unit transformations. We need a semantic 
representation of units and their atomic components so they 
can be effectively reused by automated systems.  

We leverage the work presented in [30] to transform the 
textual representations into a structured format. After this 
transformation, a unit such as “m/day” would turn into the 
structured RDF representation presented in Listing 1. The 
listing includes prefixes to represent the namespace of the 
vocabularies that are used, i.e., qudt (the NASA standard), 
ccut (a custom extension of qudt presented in [30]), mint (to 
refer to the entities in OKG-Soft) and rdfs (W3C standard). 
This representation has a clear separation between a target unit 
(m/day) its constituents (meter, day), their dimensions (length, 
time) and their relationship (length by time). Other units such 
as “km/month” share the dimension “L T-1” (length by time), 
making it easy to assess their compatibility.  

b) Semantic Description of Variables 

We use the Scientific Variables Ontology (SVO) [31],24 
an evolved version of  the Geoscience Standard Names [32], 
as our main vocabulary for linking variables to a unique 
unambiguous standard representation. SVO was designed to 
serve as a semantic mediation hub between software models 
and it defines a set of principles and guidelines to create 
unique variable identifiers based on its characteristics. For 
example, while two different software models may refer to 
“temperature” as a variable in their inputs, the first model may 
expect temperature to be at sea level, while the second model 
may expect it at a certain soil reference depth. In SVO, both 
of these variables correspond to two separate identifiers, 
namely “sea_surface_water__temperature” and 
“soil__reference_depth_temperature”, which are semantically 
related to “temperature”. 

We used the identifiers provided by expert modelers and 
software developers (built following the principles from SVO) 
to extract the context associated with each identifier and bring 
it into OKG-Soft. An example can be seen in Listing 2 for a 
variable “PRCP” that belongs to a hydrology model and 
corresponds to “main__precipitation_leq_volume_flux”: 

The example shows how one variable from a hydrology 
model (pihm_PRCP), defined as PRCP by the model in one 
of its input files, is associated with the unique standard 
variable atmosphere_water__precipitation_leq_volume_flux, 
which refers to water, quantifies a precipitation process and 

                                                 
24 http://www.geoscienceontology.org/svo  
 

refers to the property precipitation_leq_volume_flux, a type of 
volumetric flux. 

Variable context is crucial for proper interpretation and 
reusability of software. It can also be used to detect 
inconsistencies in the data, e.g., if the expected dimension 
linked by a standard variable does not match the variable 
presentation unit dimension. 

c) Semantic Description of Software Images 

Nowadays it is commonplace to use software containers to 
facilitate the execution and set up of software. In OKG-Soft 
any container framework can be linked. We are using Docker 
containers 25  that include all executable packages and 
dependencies required to run each of the software entries 
described in the knowledge graph. However, the content of a 
container may be difficult to explore by a user. We use 
DockerPedia’s web service26 to analyze and create a semantic 
representation of each container. This analysis includes all the 
software dependencies of a software configuration. Listing 3 
shows an excerpt of one of the container descriptions 

25 https://bit.ly/30EyFYS 
26 dockerpedia.inf.utfsm.cl/ 

@prefix qudt: <http://qudt.org/1.1/schema/qudt# > . 
@prefix ccut: <https://www.w3id.org/mint/ccut#> . 
@prefix mint: < https://w3id.org/ okn/i/mint/> . 
@prefix rdfs:< http://www.w3.org/2000/01/rdf-schema# > . 
mint:m_day_1L_T_1     a qudt:Unit; 
    rdfs:label             "m day-1" ; 
    ccut:hasPart        " mint: u_L_meter_m, mint: u__1_T_day_day ; 
    ccut:hasDimension   "L T-1"; 
    qudt:abbreviation     "m day -1". 
mint:u_L_meter_m       a qudt:Unit; 
    rdfs:label                   "m" ; 
    ccut:hasDimension   "L"; 
    ccut:QuantityKind   qudt:Meter; 
    ccut:symbol             "m". 
mint:u__1_T_day_day a qudt:Unit; 
    rdfs:label                     "day-1" ; 
    ccut:exponent              "-1"; 
    ccut:hasDimension      "T"; 
    ccut:QuantityKind       qudt:Day; 

    ccut:symbol         "d". 

Listing 1: Machine readable representation of the unit “m/day”. The unit is 

divided in two parts (meter and day), also described as units. 

@prefix mint: < https://w3id.org/okn/i/mint/> . 
@prefix rdfs:<http://www.w3.org/2000/01/rdf-schema# > . 
@prefix sd: <https://w3id.org/okn/o/sd#> . 
@prefix svu: <http://www.geoscienceontology.org/svo/svu#> . 
mint:pihm_PRCP a sd:VariablePresentation; 
    rdfs:label          "PRCP" ; 
    dc:description “Value of precipitation“; 
    sd:usesUnit ms:m_day_1L_T_1; 
    sd:hasStandardVariable  
<main__precipitation_leq_volume_flux>. 
<main__precipitation_leq_volume_flux>  
   rdfs:label "atmosphere_water__precipitation_leq_volume_flux"; 
   svu:describesProcess  
<http://www.geoscienceontology.org/svo/svl/process#precipitation> ; 
    svu:hasObject     
<http://www.geoscienceontology.org/svo/svl/matter#water>, 
<http://www.geoscienceontology.org/svo/svl/body#atmosphere> ;  
    svu:hasProperty    
<http://www.geoscienceontology.org/svo/svl/property#precipitation_l
eq_volume_flux> ; 
    svu:quantifiesProcess 
<http://www.geoscienceontology.org/svo/svl/process#precipitation> . 

Listing 2: Machine readable description of a variable “PRCP” that is linked 

to SVO (main__precipitation_leq_volume_flux).  



generated by DockerPedia for a climate model, which are also 
available as Web of Data objects (included software packages 
have been reduced for readability).  

d) Expanding Software Descriptions with Wikidata 

Wikidata27  [33] is an open, crowdsourced knowledge base 
that contains more than 50 million statements about entities of 
interest in the world. Wikidata is a great source of machine-
readable knowledge about entities relevant to software, and is 
continuously growing thanks to a community of users who 
curate available contents. We use Wikidata as an additional 
source to enrich software descriptions. We link software, 
atomic variables, and units that have an exact match in 
Wikidata to elements in OKG-Soft. We use an interactive 
process to clarify with a user whenever a term is ambiguous. 
For instance, terms like “albedo” may have several definitions 
in Wikidata, as it could be a physical property, a role-playing 
game or a color.  

Listing 4 shows how an enriched term appears in OKG-
Soft. Note the owl:SameAs link to the Wikidata term, which 
indicates that that the albedo entity in the software description 
and the Wikidata P4501 entity refer to the same thing. The 
schema:description definition is imported from Wikidata. 

All the software developed to facilitate enriching and 
linking OKG-Soft with existing work is openly available 
online under a CC-BY license [34].  

C. Programmatically Accessing OKG-Soft 

In order to maximize the usability of the contents in OKG-
Soft, we have strived to make the knowledge graph accessible 
to software developers and users with and without knowledge 
representation or RDF/SPARQL skills.  

Figure 2 shows an overview of the OKG-Soft API 
architecture. The lower part of the figure depicts our SPARQL 
endpoint,28 which we use to organize the contents of OKG-
Soft according to the Software Description Ontology. The 
SPARQL endpoint is targeted towards users familiar with 
Semantic Web technologies. In order to manage software 
contributions from users, we have organized the SPARQL 
endpoint in named graphs [35], where each contributor can 
edit their own graph. Therefore, all users can explore software 
entries added by other users, but only corresponding authors 
can delete their own contents.  

As shown in the medium part of Figure 2, we have 
designed REST APIs for developers without SPARQL skills 
to access, add and edit software entries in our SPARQL 

                                                 
27 http://wikidata.org/ 
28 https://endpoint.mint.isi.edu/ds/query 
29 https://github.com/mintproject/MINT-ModelCatalogQueries 

endpoint. We have adopted GRLC [36] to implement our 
access queries, as it provides a framework to configure REST 
APIs by specifying SPARQL queries in a GitHub repository.29 
Whenever a new GET API call is required, we write the 
corresponding SPARQL query and GRCL will automatically 
make it available in the API. GRLC enables us to quickly 
integrate any new API requirements in a matter of seconds, 
without having to worry about configuration or deployment of 
the system.  

New software entries for OKG-Soft are validated and 
managed through an Open API implementation,30 following 
the best practices adopted by developers. Developers may 
issue requests in JSON or JSON-LD [37], following the 
classes and properties defined in our ontology. We do not 
require creating complete software entries. Instead, software 
developers may edit and expand existing software entries by 
using a PUT operation. Since the amount of triples required to 
fully describe a software component is usually within 
hundreds of triples, we do not expect scalability issues 
(current triple stores can handle millions of triples without an 
issue). Both access and edit APIs can be found online31 along 
with documentation and examples.  

Finally, as shown in the center of Figure 2, we have also 
designed programmatic clients to facilitate using our proposed 
APIs. In this case, our target are users who are familiar with 
scripting languages such as Python, but are not familiar with 
REST APIs. An example stating how to use our Python client 
can be found in an online notebook.32  

IV. USING OKG-SOFT TO EXPLORE AND COMPOSE SOFTWARE 

In order to illustrate the benefits of OKG-Soft, we show in 
this section how queries can be answered to obtain machine-
readable metadata. We also show how it can be used to 
explore different software metadata at various levels of 
complexity through two applications that exploit the contents 

30 https://github.com/mintproject/MINT-ModelCatalogIngestionAPI 
31 https://query.mint.isi.edu/api/mintproject/MINT-ModelCatalogQueries# 
32 https://github.com/mintproject/MINT-ModelCatalogAPI-client 

 
Figure 2 OKG-Soft API structure 

@prefix dp: 
<http://dockerpedia.inf.utfsm.cl/resource/SoftwareImage> . 

@prefix dps: 

<http://dockerpedia.inf.utfsm.cl/resource/PackageVersion> . 
@prefix dpv: <http://dockerpedia.inf.utfsm.cl/vocab# >. 

@prefix rdfs:< http://www.w3.org/2000/01/rdf-schema# > . 

dp:mintproject-weather-generator_latest 
    rdfs:label    "mintproject/weather-generator" ; 

    dpv:imageIdentifier       "mintproject/weather-generator:latest" ; 

    dpv:tag      "latest"; 
    dpv:containsSoftware dps:python-pip-9.0.1-2.3~ubuntu1, 

dps:expat-2.2.5-3. 

@prefix sv:< http://www.geoscienceontology.org/svo/svl/property#> . 

@prefix schema: <https://schema.org/> . 

@prefix owl: <http://www.w3.org/2002/07/owl#> . 

sv:albedo  

  rdfs:label "albedo","reflection_coefficient" ; 
  owl:sameAs <http://www.wikidata.org/entity/P4501> ; 

  schema:description "ratio of reflected radiation to incident radiation"  

Listing 3: Fragment of a container description for a climate model 

Listing 4: Linking OKG-Soft variables with Wikidata descriptions 



of the knowledge graph to facilitate software understanding 
and composition.  

A. Answering Queries about Software  

We designed queries to evaluate OKG-Soft based on the 
requirements collected in our ontology development phase. 
That is, the queries aim to test how well a software component 
can be described to ease its understanding (i.e., input and 
output description) and composition with other software. 
Given the domain we chose to populate the knowledge graph, 
we use queries based on environmental software models.  
However, these can be generalized to describe any other type 
of software. The queries and answers used in this section are 
available in [38]. 

Query 1: What is the basic description of a given software 
component? 

This is perhaps the simplest query to start understanding 
the details of a software and its metadata, as it returns a 
description of its functionality, authorship and pointers to 
other details of software, such as its available versions, 
categories, etc. If we use Cycles 33  (an agriculture model 
derived from [39]) as our target software, the query would 
look as illustrated in Listing 5. 

Query 2: What is the information about the execution 
requirements for all available versions and configurations of 
a given software component? 

This query serves a dual purpose: it finds all the versions 
and configurations of a given software component and 
retrieves pointers to their executable information, i.e., the 
location of the scripts detailing how to invoke software and 
whether it has associated containers for its execution. For 
Cycles, the resultant query is shown in Listing 6.  

Query 3: What are the expected inputs and outputs of a 
software configuration? 

This query gives an insight into how a specific software 
component can be executed by listing its required inputs and 
expected outputs. Optional outputs are returned as part of a 
configuration, even if they are not always present in the 
execution of the component. In the case of Cycles, the query 
in Listing 7 returns all its configurations, with their associated 
inputs and outputs grouped together. 

Query 4: Given an input or output, what are its associated 
variables and metadata?  

Once the inputs and outputs used by a software 
configuration are clear, the next step is to find more about their 
contents, i.e., the different variables they describe. For 
example, in the previous example one of the inputs of Cycles 
is a “weather” file (mint:cycles_weather), that contains 
relevant variables for the software model related to weather. 
Listing 8 displays the query required to further describe the 
file. The results of the query produce a table, where each row 
is a variable with its label, its description, the units it is 
measured in and the standards variable it corresponds to. For 
example, one of the variables included in the file is “Tn” 
(minimum temperature of the day), measured in Celsius, 
which corresponds to the SVO term 
“air__daily_min_of_temperature”. 

                                                 
33https://plantscience.psu.edu/research/labs/kemanian/models-and-

tools/cycles 

Query 5: Which software produces a variable that may be 
used as input for another software component?  

This query expands on how a software component may be 
composed with other software. Specifically, it retrieves those 
software entries that produce a resulting variable required to 
run another software. Following our previous example for 

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> 

prefix sd: <https://w3id.org/okn/o/sd#>  
select  ?version ?configuration where { 

 ?model sd:hasSoftwareVersion ?version; 

     rdfs:label "Cycles". 
 ?version sd:hasConfiguration ?configuration.  

 OPTIONAL {?configuration sd:hasComponentLocation ?loc} 

 OPTIONAL {?configuration sd:hasContainer ?cont.} 
} 

@ prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . 
@ prefix sd: <https://w3id.org/okn/o/sd#> . 

select  distinct ?configuration (group_concat (distinct ?input; 

separator=', ') as ?input_variables) ((group_concat (distinct ?output; 
separator =', ') as ?output_variables) where { 

 ?soft sd:hasSoftwareVersion ?version. 

 ?soft rdfs:label "Cycles". 
 ?version sd:hasConfiguration ?configuration. 

 ?configuration sd:hasInput/rdfs:label ?input; 

                         sd:hasOutput/rdfs:label ?output . 

} 

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>  
prefix sd: <https://w3id.org/okn/o/sd#>  

prefix mint: < https://w3id.org/okn/i/mint />  

select  distinct  ?label ?longName ?unit ?sn where { 

mint:cycles_weather sd:hasPresentation ?variable. 

    ?variable sd:usesUnit/rdfs:label ?unit; 

         rdfs:label ?label; 
         sd:hasLongName ?longName; 

         sd:hasStandardVariable/rdfs:label ?sn. 

} 

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> 

prefix sd: <https://w3id.org/okn/o/sd#>  

select distinct ?model_config where { 
  ?io a sd:DatasetSpecification. 

  ?io sd:hasPresentation / sd:hasStandardVariable / rdfs:label 

"air__daily_min_of_temperature". 
  ?soft_config sd:hasOutput ?io. 

} 

Listing 6: Query to retrieve all versions and configurations of a software 
component (?soft) and their respective executable information.  

Listing 7: Query to retrieve inputs and output of a software component.I 

Listing 8: Query to retrieve the inputs and outputs of a software 

configuration (?soft_config) 

Listing 9: Query to retrieve software compatible with a given software input 
(mint:cycles_weather)  

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> 
SELECT ?property ?value 

WHERE { 

  ?software ?property ?value. 
  ?software rdfs:label “Cycles” 

} 

Listing 5: Query to retrieve basic descriptions of software 



Cycles, we can query for software entries that generate 
estimates on the minimum temperature of the day, as shown 
in Listing 9. 

The result of the query (available online with the rest of 
the queries shown in this section [38]) returns a software 
configuration from a weather generator which can be used to 
inform an agriculture model.  

A very similar query (by replacing sd:hasOutput with 
sd:hasInput) may be used to retrieve which software 
configurations are compatible with a given result from Cycles, 
and thus retrieve which other software entries Cycles can be 
combined with.  

In summary, these queries show how the contents of 
OKG-Soft may be used to gather insight about the different 
ways of running software, its expected inputs, outputs and 
variables; and how it may interoperate with other software. All 
queries return results in less than a second. 

B. An Application for Exploring Software Components: 

Model Explorer 

We have designed Model Explorer,34 an application for 
finding and exploring software models and metadata available 
in OKG-Soft without having to interact with the APIs or 
clients designed for developers. A snapshot of the application 
can be seen in Figure 3, highlighting the main capabilities of 
Model Explorer.  

As shown on the top left of Figure 3, users can search for 
existing software models by typing their names, or sorting 
them out by category (e.g., Agriculture, Climate, etc.). Once a 
model is selected, the application will show its available 
versions and software configurations so users can explore 
their corresponding inputs and outputs (highlight 2 on Figure 
3). If several software configurations are available for a 
particular model version, the application will display them 
side by side to enable comparison. If several versions of a 

                                                 
34 http://models.mint.isi.edu 

software component are available, by default the system will 
display the last one, allowing users to select others. 

Elements shown in model configurations are interactive 
and will lead the users to pages with more information about 
a software component. For example, highlight 4 in Figure 3 
shows the variable description table that appears after clicking 
on one of the inputs of a hydrology model. Highlight 3 shows 
an interactive graph of the variables included on a model, and 
how they affect each other in a particular software 
configuration. The code of the Model Explorer application is 
available online.35  

C. An Application for Facilitating the Integration and 

Composition of Software Models: MINT  

One of the most challenging aspects of using software 
models is selecting the appropriate input data products and 
preparing them according to the models to run. MINT [29], 
[40] is a novel framework for model integration that uses 
semantic representations to describe datasets and models to 
support users in data search and transformation; model 
selection, setup and combination into end-to-end workflows, 
and execution and visualization of results. MINT is integrated 
with OKG-Soft, exploiting the contents of the knowledge 
graph to assist users when running individual software models 
or when running software models in combination with other 
models. Figure 4 shows a simplified overview of how the 
system interacts with users to assist in their analysis. First, 
users specify a set of variables of interest for the modeling 
question they want to address. For example, in Figure 4 a user 
is interested in analyzing how different aspects of rainfall 
would affect crop production for a given region. MINT uses 
this information to locate software models that produce the 
target variable (crop production), and how to derive it from 
the driving variable of the analysis (rainfall). Since rainfall is 
a variable that could refer to different specific properties (mass 
flux, average volume, volume flux or time integral of volume 
flux), the system considers all of them when looking for 
candidate software models. Then, MINT suggests appropriate 

35 https://github.com/mintproject/MINT-ModelCatalogExplorer/ 

 

Figure 3: An overview of the Model Explorer, and application to navigate scientific software models included in OKG-Soft. Model Explorer allows searching 
for models (1), analyzing which are the inputs and outputs of a given model configuration (2) viewing potential relationships between variables (3) and finding 

out more about the contents of model files (4) 



combinations of models, along with the necessary data 
transformations composed together as a workflow.  

V. CONCLUSIONS AND FUTURE WORK 

In this paper we have presented OKG-Soft, a framework 
for capturing, publishing, and using machine-readable 
metadata for software. We have organized the contents of 
OKG-Soft by extending the Software Description Ontology 
with descriptions of input and output datasets of the software 
in terms of format and contents. We have tested our ontology 
by modeling and curating environmental software, including 
domains such as hydrology, climate and agriculture. We 
publish the software descriptions as an open knowledge graph 
with links to the Web of Data using Linked Data principles. 
Our framework supports the FAIR principles with respect to 
scientific software by exposing software descriptions on 
public APIs for search purposes (findability), using persistent 
HTTP URIs to refer to software and its associated contents 
(accessibility), using common vocabularies and standards to 
describe software (interoperability) and by describing the 
inputs and outputs of software (easing reusability). Two 
applications (Model Explorer and MINT) demonstrate how 
the infrastructure we developed may be used to explore and 
combine software models. 

We are supporting additional queries and improving the 
documentation of our APIs to facilitate their usability. We are 
also working with third party developers of scientific software 
who are starting to and curate the contents of OKG-Soft and 
posing new requirements.  

As for the population of OKG-Soft, while adding a new 
entry on the knowledge graph can be achieved through an API 
call, we still have to address the curation and editing of 
software metadata. Creating complete metadata for a piece of 
scientific software can take a significant amount of time for 
contributors, but we argue that the process only needs to be 
completed once, and the payoff in terms of composition, 
understanding and reusability is worth the extra effort. 
Nevertheless, our current and future work aims to address this 

issue by moving towards an automatic metadata ingestion 
approach. We plan on testing text metadata extraction 
techniques to retrieve relevant software metadata (license, 
contributors, variable information, etc.) typically buried in 
readme files, instruction manuals or even source code.  

We are also working on describing the format of files in 
terms of how variables are represented within input and output 
files (e.g., their position in a CSV), so as to automatically 
reformat files and convert variables. Finally, we are working 
towards creating an executable environment to test the 
software entries defined within OKG-Soft.  
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